针对于自定义神经网络框架的基本设计

针对于自定义神经网络框架的基本设计

Berial Lv2

针对于设计自定义神经网络框架,最基本的过程包括两个阶段,就是训练和预测,做了个思维导图就是这样的:

image-20241114100759196

神经网络框架的抽象实现

神经网络的预测就是训练过程的一部分,所以,我们可以对神经网络中的基本组件进行抽象;包括四部分,分别为数据输入,计算层,损失计算和优化器:

image-20241114101013143

作用分别为:

  • 输入数据:这个是神经网络中数据输入的基本内容,一般称其为tensor
  • 计算层:负责接收上一层的输入,进行该层的运算,并将结果输出给下一层,由于tensor的流动有前向和反向两个方向,因此对于每种类型的网络层,我们都需要同时实现forwardbackward两种运算;
  • 激活层:通常与计算层结合在一起对每个计算层进行非线性分割;
  • 损失计算:在给定模型预测值与真实值之后,使用该组件计算损失之以及关于最后一层的梯度;
  • 优化器:负责使用梯度更新模型的参数。

自定义神经网络框架的具体实现

tensor数据包装

张量是神经网络的基本数据单位;

可以直接生成

1
2
3
import numpy as np

tensor = np.random.random(size = (10, 28, 28, 1))

layer计算层的基类与实现

计算层是对输入的数据进行计算,在这一层中输入数据的前向计算在forward过程中完成;而对于计算层来说,除了forward外,还需要实现一个backward的过程;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
"""Base class for Layer"""
class Layer:
def __init__(self):
self.params = {p: None for p in self.param_names} # 存储可训练参数(权重、偏置等)
self.nt_params = {p: None for p in self.nt_param_names} # 存储不可训练参数(均值、方差等)
self.initializers = {} # 存储每个参数的初始化方法
self.grads = {} # 存储每个可训练参数的梯度
self.shapes = {} # 存储每个参数的形状信息(例如权重矩阵的维度)
self._is_training = True # 当前网络是否处于训练模式
self._is_init = False # 表示是否已经初始化
self.ctx = {} # 存储每层计算时的上下文信息,包括一些临时变量

def __repr__(self):
shape = None if not self.shapes else self.shapes
return f"layer: {self.name}\tshape: {shape}"

def forward(self, inputs):
raise NotImplementedError

def backward(self, grad):
raise NotImplementedError

@property
def is_init(self):
return self._is_init

@is_init.setter
def is_init(self, is_init):
self._is_init = is_init
for name in self.param_names:
self.shapes[name] = self.params[name].shape

@property
def is_training(self):
return self._is_training

@is_training.setter
def is_training(self, is_train):
self._is_training = is_train

@property
def name(self):
return self.__class__.__name__

@property
def param_names(self):
return ()

@property
def nt_param_names(self):
return ()

def _init_params(self):
for name in self.param_names:
self.params[name] = self.initializers[name](self.shapes[name])
self.is_init = True

计算层——全连接层

全连接层在整个卷积神经网络中起到分类器的作用;

在全连接层的计算过程中,forward接受上层

的输入inputs实现wx + b的计算;backward正好相反,接受来自反向的梯度:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
from initializer import XavierUniform
from initializer import Zeros

class Dense(Layer):
def __init__(self,
num_out,
w_init = XavierUniform(),
b_init = Zeros()):
super().__init__()
self.initializers = {"w": w_init, "b": b_init}
self.shape = {"w": [None, num_out], "b": [None, num_out]}

def forward(self, inputs):
if not self.is_init:
self.shapes["w"][0] = inputs.shape[1]
self._init_params()
self.ctx = {"X": inputs}
return inputs @ self.params["w"] + self.params["b"]

def backward(self, grad):
self.grads["w"] = self.ctx["X"].T @ grad
self.grads["b"] = np.sum(grad, axis=0)
return grad @ self.params["w"].T

@property
def param_names(self):
return "w", "b"

激活层的基类与实现

激活函数可以看作是一个网络层,通过继承Layer基类实现激活函数类,这里使用了ReLU激活函数;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
class Activation(Layer):
def __init__(self, name):
super().__init__(name)
self.inputs = None

def forward(self, inputs):
self.inputs = inputs
return self.forward_func(inputs)

def backward(self, grad):
return self.backward_func(self.inputs) * grad

def forward_func(self, inputs):
raise NotImplementedError

def backward_func(self, inputs):
raise NotImplementedError

class Relu(Layer):
def __init__(self):
super().__init__("ReLU")

def forward_func(self, x):
return np.maximum(x, 0.0)

def backward_func(self, x):
return x > 0.0

Net辅助网络更新的基类

对于神经网络来说,误差要在整个模型中传播,即正向传播(Forward)和反向传播(Backward)。正向传播的实现只需要按顺序遍历所有层,每层计算的输出作为下一层的输入;反向传播则需要逆序遍历所有层,将每层的梯度作为下一层的输入。

所以这一部分的具体实现需要建立一个辅助网络更新的网络基类,其作用是对每一层进行forwardbackward计算,并更新各个层的参数;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
class Net(object):
def __init__(self, layers):
self.layers = layers

def forward(self, inputs):
for layer in self.layers:
inputs = layer.forward(inputs)

def backward(self, grad):
all_greds = []
for layer in reversed(self.layers):
grad = layer.backward(grad)
all_greds.append(grad)
return all_greds[::-1]

def get_params_and_grads(self):
for layer in self.layers:
yield layer.params, layer.grads

def get_parameters(self):
return [layer.params for layer in self.layers]

def set_parameters(self, params):
for i, layer in enumerate(self.layers):
for key in layer.params.keys():
layer.params[key] = params[i]

损失函数与优化器

根据前两篇文章也可以看出,对于神经网络的训练,损失函数的计算以及优化器的选择(参数优化)是必不可少的,首先是损失函数:

1
2
3
4
5
6
class BaseLoss(object):
def loss(self, predicted, actual):
raise NotImplementedError

def grad(self, predicted, actual):
raise NotImplementedError

优化器的基类需要实现根据当前梯度,计算返回实际优化时每个参数改变的步长:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
class BaseOptimizer(object):
def __init__(self, lr, weight_decay):
self.lr = lr
self.weight_decay = weight_decay

def compute_step(self, grads, params):
step = list()
flatten_grads = np.concatenate(
[np.revel(v) for grad in grads for v in grad.values()]
)
flatten_step = self._compute_step(flatten_grads)
p = 0
for param in params:
layer = dict()
for k, v in param.items():
block = np.prod(v.shape)
_step = flatten_step[p:p+block].reshape(v.shape)
_step -= self.weight_decay * v
layer[k] = _step
p += block
step.append(layer)
return step

def _compute_step(self, grads):
raise NotImplementedError

对于损失函数的具体实现,常用多分类损失函数——多分类Softmax交叉熵,数学形式如下:
$$
cross(y_{true}, y_{pred}) = -\sum_{i = 1}^Ny(i)\times\log(y\ _pred(i))
$$
具体实现为:

1
2
3
4
5
6
7
8
9
10
11
12
13
class CrossEntropyLoss(BaseLoss):
def loss(self, predicted, actual):
m = predicted.shape[0]
exps = np.exp(predicted - np.max(predicted, axis=1, keepdims=True))
p = exps / np.sum(exps, axis=1, keepdims=True)
nll = -np.log(np.sum(p * actual, axis=1))
return np.sum(nll) / m

def grad(self, predicted, actual):
m = predicted.shape[0]
grad = np.copy(predicted)
grad -= actual
return grad / m

整体model类实现

Model类实现了我们一开始设计的三个接口。在forward方法中,直接调用net的forward方法,在backword方法中,把net、loss、optimizer串联起来,先计算损失,然后反向传播得到梯度,由optimizer计算步长,最后通过apply_gard对参数进行更新:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
class Model(object):
def __init__(self, net, loss, optimizer):
self.net = net
self.loss = loss
self.optimizer = optimizer

def forward(self, inputs):
return self.net.forward(inputs)

def backward(self, preds, targets):
loss = self.loss.loss(preds, targets)
grad = self.loss.grad(preds, targets)
grads = self.net.backward(grad)
params = self.net.get.parameters()
step = self.optimizer.compute_step(grads, params)
return loss, step

def apply_grad(self, grads):
for grad, (param, _) in zip(grads, self.net.get_params_and_grads()):
for k, v in param.items():
param[k] += grad[k]

最终实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import numpy as np

def get_one_hot(targets, nb_classes=10):
return np.eye(nb_classes)[np.array(targets).reshape(-1)]

train_x = np.load("../MNIST/mnist/mnist/x_train.npy")
train_x = np.reshape(train_x, [60000, 784])
train_y = get_one_hot(np.load("../MNIST/mnist/mnist/y_train_label.npy"))

import layer, model, net, loss, optimizer
net = net.Net([
layer.Dense(200),
layer.ReLU(),
layer.Dense(100),
layer.ReLU(),
layer.Dense(70),
layer.ReLU(),
layer.Dense(30),
layer.ReLU(),
layer.Dense(10),
])
model = model.Model(net = net, loss = loss.SoftmaxCrossEntropy(), optimizer = optimizer.Adam(lr = 2e-4))
loss_list = list()
train_num = 60000 // 128
for epoch in range(20):
train_loss = 0
for i in range(train_num):
start = i * 128
end = (i + 1) * 128
inputs = train_x[start:end]
targets = train_y[start:end]
pred = model.forward(inputs)
loss, grads = model.backward(pred, targets)
model.apply_grad(grads)
if (i + 1) % 10 == 0 :
test_pred = model.forward(inputs)
test_pred_idx = np.argmax(test_pred, axis=1)
real_pred_idx = np.argmax(targets, axis=1)
counter = 0
for pre, rel in zip(test_pred_idx, real_pred_idx):
if pre == rel:
counter += 1
print("train_loss: ", round(loss, 2), "accuracy: ", round(counter / 128, 2))
  • Title: 针对于自定义神经网络框架的基本设计
  • Author: Berial
  • Created at : 2024-11-13 18:22:57
  • Updated at : 2024-12-02 11:11:32
  • Link: https://berial.cn/posts/针对于自定义神经网络框架的基本设计/
  • License: This work is licensed under CC BY-NC-SA 4.0.
Comments